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Amphicheiral knots with up to 12 crossings are discussed from the perspective of their sym- 
metry properties. By use of an algorithm that involves the development of appropriate vertex- 
bicolored knot graphs, rigidly achiral presentations have been found for all amphicheiral inver- 
tible prime knots with up to 10 crossings and for a selected number of such knots with 12 cross- 
ings, including 121994, the first example of an amphicheiral prime knot whose S2n diagram is 
also a reduced diagram. Characteristic properties of wire models of these presentations have 
been examined. The adjacency matrices of the vertex-bicolored graphs of amphicheiral knots 
exhibit twofold antisymmetry, and, with the sole exception of 12427, all such knots are capable 
of rigidly antisymmetric presentations. 

1. I n t r o d u c t i o n  

Knot ted  molecules are exotic newcomers on the scene in chemistry and biochem- 
istry. Single- and double-stranded D N A  knots, though arguably present in living 
organisms millions of  years ago, were first discovered in 1976 [1], by now they have 
become a commonplace  in "biochemical topology" [2-4]. The rat ional  synthesis 
of  molecular  knots - suggested as long ago as 1953 [5], and the subject of  ingenious 
proposals in the 1970s [6] - was finally achieved in 1989 [7]. This milestone in "che- 
mical topology"  [8,9] and "topological s tereochemistry" [10,11] was followed in 
1991 by the first rational synthesis of  single-stranded D N A  knots [12]. But fascina- 
tion with knot ted  objects transcends their embodiment  in molecular  form: their 
universal appeal lies in the apparently limitless capacity of  knots to adopt  intri- 
cately interlaced and convoluted structures, in the dazzling symmetry  of  these 
structures (as in the magnificent Celtic knotwork  [13]), and in the mathemat ica l  
challenges posed by the resulting complexity. Knots  and links thus afford a rich 
source of  intellectual and aesthetic delight to chemists and mathemat ic ians  alike. 

In this article we report  some observations on amphicheiral  knots, a class of  
knots whose allure derives from their special symmetry.  To provide the necessary 
background,  we begin our account  with an informal description of  some basic con- 
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cepts and terminology; for further details the reader is referred to the specialized 
l i terature [14-24]. 

A knot is a closed curve embedded in 3-space that  does not  intersect itself. 
Accordingly,  a circle in the plane is also a knot,  though a trivial one (the unknot). A 
given knot  can be distorted, by continuous deformations,  into a variety of  shapes 
(presentations) that  form an equivalence class (isotopy type ). Equivalent presenta- 
tions are isotopic or homeotopic; the latter term may  be preferable in a chemical 
context  since the former  carries a totally different meaning in chemistry [11 c]. 

For  convenience in analysis, knots are projected in the plane as knot diagrams: 
closed curves in which each transverse double point is marked  in a suitable manner  
so as to represent an over- or an undercrossing, as illustrated in fig. 1 (a) and (b) 

(a) ~) 

(c) (d) (e) 

(f) (g) (h) 

(i) O) 

Fig. 1. (a) and (b) Enantiomorphs of the trefoil or overhand knot, 31. (c) Figure-eight, or Listing's, 
knot, 41. (d) Knot 74, with two nugatory crossings. (e) A non-alternating knot, 820. (f) Square, or reef, 
knot. (g) and (h) Enantiomorphs of the granny knot. (i) and (j) The "Perko pair", with writhes +8 

and+10. 
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for the two mirror-image forms (enantiomorphs) of the trefoil, or overhand, knot. 
Crossing points in knot diagrams are characterized by first assigning a direction to, 
i.e. orienting, the curve - the choice of direction is immaterial - and then labeling 
the crossing points with the appropriate signs in accordance with the convention in 
fig. 2. Thus, all three crossings are positive in fig. l(a) and negative in fig. l(b). 
Note that while each crossing point is always associated with a two-valued charac- 
teristic, e, the assumption of a numerical value as in fig. 2 is not an exclusive 
option, as will be shown below. 

The number of crossings in a knot diagram may be reduced to a minimum by 
removal of all unnecessary or nugatory crossings, to yield a reduced diagram. For a 
knot K that number is the minimum crossing number, c(K) (crossing number, for 
short). For example, c(K) = 0 for the unknot, 3 for the trefoil knot, 4 for the figure- 
eight, or Listing's, knot (fig. l(c)), and 7 for the knot in fig. l(d), which has two 
nugatory crossings and which is "one of the eight glorious emblems of Tibetan Bud- 
dhism" [24]. Knot  types are characterized by their crossing numbers according to 
a convention [14,25] in which c(K) is subscripted by a numerical index, needed 
because two or more nonequivalent knots share the same crossing number for 
c (K)>4.  For example, the knots depicted in fig. l(a), (b), (c), (d), and (e) are 
denoted 31, 3:, 41,74, and 820, respectively. The writhe, w(K), of a knot K is the 
arithmetic sum of the crossing point characteristics, each of which has a value of ÷ 1 
or -1 ,  i.e., w(K) = Ee. For example, the writhes of the knots depicted in fig. l(a), 
(b), (c), (d), and (e) are +3, -3 ,  0, +7, and -2 ,  respectively. A knot is alternating if 
overpasses alternate with underpasses all along the curve in the reduced knot dia- 
gram; otherwise it is non-alternating. For example, 31,41, and 74 are alternating 
knots, while 820 is non-alternating. Alternating knots are listed first in knot tabula- 
tions, followed by non-alternating knots. 

Also shown in fig. 1 are the square, or reef, knot, (f), and the two enantiomorphs 
of the granny knot, (g) and (h), with w(K) = 0, +6, and -6 ,  respectively. In each 
knot, a plane perpendicular to the plane of projection and pierced in exactly two 
points cuts the knot in half. If the open ends on both sides of the plane are now 
joined to form closed curves, two trefoil knots result. The square and granny knots 
are examples of composite or product knots, KI#K2, whose factors are prime 
knots. For examples, if 31 denotes the enantiomorph with a positive and 31 the one 
with a negative writhe, then (f) = 31#31 --- 3 ~ 3 : ,  (g) = 31#31, and (h) = 3~3~ .  
In contradistinction, 31,4:, 74, and 820 are all prime knots since they cannot be 

(+) (-) 

Fig. 2. Convention used to assign characteristics (e = + 1 or - 1) to crossings in knot diagrams. 
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divided (factored) into smaller, non-trivial knots. Chemists will have no difficulty 
recognizing that the square knot is in some ways analogous to the meso diastereo- 
mer of a compound such as 2,3-dibromobutane, while the enantiomorphs of the 
granny knot are analogous to the D and L isomers [26]. 

Tables and projections of alternating and non-alternating prime knots with up 
to 10 crossings were compiled toward the end of the nineteenth century by a "trio of 
tabulating titans" [20]: Kirkman [27], Little [28], and Tait [29]. This count (cen- 
sus) of the "classical knots" stood the test of time until 1974, when Perko showed 
that two non-alternating knots with different writhes (10161 and 10162 in [24] after 
reflection of one of the diagrams) were in fact isotopic. Called "notorious" [20], 
and even "infamous" [30], the "Perko pair" is shown in fig. l(i) and (j). The most 
recent census is by Thistlethwaite [20], who lists 12,965 prime knots with up to 13 
crossings, but adds the cautionary note that "it would be most unwise to claim cate- 
gorically that this listing was correct, in the absence of independent verification". 

2. Topological  chirality and achirality 

A knot is topologically achiral, or amphicheiral, if and only if it can be mapped 
onto its mirror image by a continuous (isotopic) deformation; otherwise it is topo- 
logically chiral. Topological chirality and achirality have been of central concern 
since the dawn of knot theory [31], and interest in this topic continues unabated; for 
example, see [30,32-38] and references cited above. 

Amphicheiral knots are vastly outnumbered by chiral ones: of the 12,965 prime 
knots with c(K) ~< 13, only 78 are amphicheiral. As is evident upon inspection of the 
census in table 1, one reason is that the total count of knots increases steeply with 

Table 1 
Census of prime knots. 

Crossing number Total number of knots a) Number of 
amphicheiral knots 

3 1 0 
4 1 1 
5 2 0 
6 3 1 
7 7 0 
8 21 5 
9 49 0 

10 165 13 
11 552 0 b) 
12 2 176 58 b) 
13 9 988 0 b) 

~) [20]. Chiral knots are counted only once. 
b~ [53]. 
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an increase in crossing number while the fraction of amphicheirals decreases 
almost exponentially. That is, the density of amphicheirals decreases as the cross- 
ing number increases. The second reason is that no amphicheiral knot with an odd 
crossing number has ever been encountered. Tait [29] conjectured that all knots 
with an odd crossing number are topologically chiral, and just over a hundred years 
later Murasugi [39] proved Tait's conjecture to be true for alternating knots. 
Hence, all amphicheiral alternating knots have an even number of crossings. 
Furthermore, it was proven [33b,40] that the reduced diagrams of such knots have 
a writhe of zero, i.e., an equal number of over- and undercrossings that are 
switched upon reflection in the plane of projection. It is truly remarkable that this 
was anticipated in Tait's empirical studies, and that Tait also correctly identified all 
amphicheiral prime knots with up to 10 crossings: 41; 63; 83, 89, 812, 817, 818; 1017, 
1033, 1037, 1043, 1045, 1079, 1081, 1088, 1099, 10109, 10115,10118,10123 (in modern nota- 
tion). All these knots are alternating. 

14 

Fig. 3. Knot 63 symmetrically stretched over a sphere. The dashed line is a diameter that connects 
the midpoints a and b of the two laps at the antipodes of the sphere. 
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/ 
41 63 83 89 812 812 

817 818 1017 1033 1033 1037 

1037 1043 1043 1043 1045 1045 

1045 1045 1079 108x 1081 1088 

J 
1088 1099 10109 10115 10118 10123 

Fig. 4. Tait diagrams for the 20 amphicheiral prime knots with up to 10 crossings. The equal signs con- 
nect some alternative choices of antipodal laps for the same knot. See also fig. 5. 
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In the course of his investigations, Tait [29c] noted that every amphicheiral 
prime knot with up to 10 crossings can be "symmetrically stretched over a sphere", 
with the midpoints of two laps disposed antipodally as illustrated for 63 in fig. 3; 
the term "lap" as used here refers to a segment or arc of the knot whose ends are 
given by two consecutive crossings. If one the laps is cut at the midpoint, as at a or b 
in fig. 3, and the opened knot is projected on a plane, a centrosymmetric reduced 
diagram is obtained. Such diagrams (which we propose to call Tait diagrams) are 
shown in fig. 4 for the 20 classical amphicheiral prime knots. 

How is one to describe the "quasi-symmetry" [29c] of presentations such as the 
one in fig. 3? If symmetry operations are restricted to the classical combinations of 
rotations and reflections, i.e., to strictly geometric operations, then the presenta- 
tion in fig. 3 is clearly asymmetric. What is needed to capture the essence of the 
"quasi-symmetry" is an additional, non-geometric operation that switches over- 
and undercrossings. This purpose is served by the dichromatic operation [41], in 
which two colors are used to represent over- and undercrossings [42]. Seen in this 
light, Tait's pairs of "right and left handed meshes" [29c] are related as a right- 
handed black glove and a right-handed white glove (or a left-handed black glove 
and a left-handed white glove), and Tait's "quasi-symmetry" finds expression in a 
Shubnikov dichromatic point group [41]. For the 20 knots in fig. 4 this group is 
C~ = {e, C~(x)}, where C~(x) denotes the operation of twofold antirotation, i.e. 
rotation by ~ around the x-axis combined with a transposition of colors. The x-axis, 
or twofold axis of antisymmetry, which is represented by the dashed line in fig. 3, 
bisects the antipodal laps and thus contains exactly two points that belong to the 
knot. Alternatively, twofold antirotation can be expressed in isomorphic permuta- 
tion groups G' ~ C~. For example, G' = {e, (12)(34)(56)'} for 63, where the num- 
bered crossings refer to fig. 5 and the prime indicates the transposition of colors. 

Whereas all classical amphicheiral prime knots can be shaped into rigidly anti- 
symmetric presentations, like the one in fig. 3, chiral knots, including those with 
writhe 0 (e.g. 84, 1019, 1031, and 1091, to mention j ust a few), are incapable of adopt- 
ing such presentations. These observations suggest that twofold antisymmetry is a 
stronger condition for amphicheirality than writhe. 

3e( 
( 

6C 

Fig.  5. Tai t  d iagrams  of  knot  63 with numbered  crossings. The filled (black) and open (white) circles 
cor respond to e = + 1 and - 1, respectively. Left: cut a t  a in fig. 3. Right:  cut at  b in fig. 3. 
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3. Vertex-bicolored knot graphs ofantisymmetric presentations 

To each reduced diagram of a knot may be associated a planar multigraph (a 
knot graph) whose vertices and edges represent the knot's crossing points and laps. 
A graph is a knot graph if and only if (a) it is regular of degree 4, (b) it consists of 
a single block, and (c) the path created by joining the ends of opposite edges at each 
vertex is a single closed curve ("eulerian trail") [43]. 

3.1. VERTEX-BICOLORED GRAPHS 

Different knots can have the same knot graph; for example, 817 , 819 , 820 , and 821 
all have the same graph [43]. This degeneracy is lifted if each vertex is labeled with 
a suitable characteristic that differentiates over- from undercrossings. For exam- 
ple, use of filled (black) and open (white) circles to label the vertices yields vertex- 
bicolored knot graphs, G(K) [42]; these graphs differentiate the four knots from 
each other and the three chiral knots, 819,820, and 821, from their non-isotopic enan- 
tiomorphs (fig. 6). In contradistinction, the graphs of the amphicheiral knot 817 
and its mirror image are isomorphic; that is, their adjacency matrices are the same. 
That w(817) = 0 is immaterial; for example, in the case of chiral 84, whose writhe 
is also zero, the vertex-bicolored graphs of the enantiomorphs are not isomorphic. 
What matters instead is whether the black and white subgraphs and the connectiv- 
ities between them are equivalent: if they are, then the graphs of the mirror-image 
diagrams are isomorphic, otherwise they are not. For example, 1043 is an amphi- 
cheiral knot whose diagram in Rolfsen's table [24] is reproduced in fig. 7(a). 
Because the black and white subgraphs of the associated graph G(a) are not equiva- 
lent, G(a) is not isomorphic to its mirror image (the mirror image is obtained by 
switching the colors, which corresponds to a reflection in the plane). Continuous 
deformation yields the diagram in fig. 7(b), whose associated graph, G(b), is iso- 
morphic to its mirror image because the black and white subgraphs and the connec- 
tivities between them are equivalent. G(b) can be converted into a Tait diagram 
(fig. 4) by cutting one of the two laps that corresponds to the edges between vertices 
1 and 10 and vertices 4 and 7. The duality described for 1043 is not unique and is 
shared by the diagrams for 1081 and 1088 in Rolfsen's table. 

3.2. ADJACENCY MATRICES 

The distinction between the two diagrams in fig. 7 is also expressed in the adja- 
cency matrices, A, of the respective vertex-bicolored graphs. Following precedent 
[42], we define the adjacency matrix A = (a/j) as one whose elements are given by 

t if vertex i is black, 

a i i= t- 1 if vertex i is  white, 
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G(8,7) 

8 5 

 6817 4 

G(819) G(819") 

G(820) G(820*) 

G(821) ~ O(821") 

Fig. 6. Seven different knots with the same knot graph but with different vertex-bicolored graphs: 
~- * * * 8~1 (8~ is the mirror image of 8x). The amphicheiral knot 817 and its 817 817,819,819,820, 820, 821, and 

mirror image 817 have identical connectivities, as indicated by the numbered vertices. 

10 4 

(a) G(a) 

1 0 ~  4 

Co) GCO) 

Fig. 7. Two reduced diagrams of 104s and associated vertex-bicolored knot graphs. Diagram (b) cor- 
responds to an antisymmetric presentation whereas diagram (a) [24] does not. Graph G(b) is iso- 

morphic to its mirror image whereas graph G(a) is not. 
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The absolute value of 
G(b) in fig. 7: 

t 2 

2 t 

1 1 

1 0 

0 0 
A(a) = 

0 1 

0 0 

0 0 

0 0 

0 0 

C. Liang, K. Mislow / On amphicheiral knots 

s vertices i and j are connected with multiplicity s, 

a,j = 0 otherwise. 

t satisfies Itl # 1. Accordingly, with reference to G(a) and 

t 

2 

1 

0 

0 
A(b) = 

0 

0 

0 

0 

1 

1 1 0 0 0 0 0 O N  
1 

1 0 0 1 0 0 0 0 

t 0 0 1 0 0 0 1 

0 t 2 0 1 0 0 0 

0 2 t 0 0 1 1 0 

1 0 0 t -~ 2 0 0 0 

0 1 0 2 t -~ 1 0 0 

0 0 1 0 1 t -1 1 1 

0 0 1 0 0 1 t -1 2 

1 0 0 0 0 1 2 t -~ 

2 1 0 0 0 0 0 0 1 

t 1 0 0 1 0 0 0 0 

1 t 1 0 1 0 0 0 0 

0 1 t 2 0 1 0 0 0 

0 0 2 t 0 0 1 1 0 

1 1 0 0 t -1 2 0 0 0 

0 0 1 0 2 t -~ 1 0 0 

0 0 0 1 0 1 t -1 1 1 

0 0 0 1 0 0 1 t -~ 2 

0 0 0 0 0 0 1 2 t -1 

A twofold axis of antisymmetry may be imagined to pass through the center 
(i.e., the intersection of  the major and minor  axes) of  A(b), at right angles to the 
paper. There is no such axis in A(a). In general, twofold ant isymmetry in A satisfies 
the following relationship: 

aii +-¢ a N + l - i , N + l - i  , 

aij = aN+l-j,N+l-i 

where i , j  = 1 , 2 , . . . ,  N,  and ~ represents a switch in colors. It should be noted 
that  the four l 's  in the minor  diagonal of  A(b) represent the two edges in G(b) that  
correspond to the two laps bisected by the twofold axis of  antisymmetry. Exactly 
four l ' s  are found in the minor  diagonals of all the antisymmetric adjacency 
matrices of  the 20 amphicheiral prime knots with up to 10 crossings. 
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For  any r andom labeling of  vertices, the adjacency matrix,  A', can always be 
converted into one with twofold ant isymmetry,  A, by the appropriate t ransforma-  
tion, A = T A ' T  -1 , provided that  the black and white subgraphs of  the correspond- 
ing vertex-bicolored graph (and the connectivities between them) are equivalent, 
as in G(b). On the other  hand, because the black and white subgraphs of  G(a) are 
not  equivalent, it is not  possible to t ransform A(a)  into a matr ix  that  exhibits two- 
fold ant isymmetry,  even though the diagrams in fig. 7(a) and (b) project  equivalent 
(isotopic) presentations of  the same knot. 

3.3. POLYNOMIALS DERIVED FROM ADJACENCY MATRICES 

For  diagrams with twofold ant isymmetry,  P(t) = P(t -x), where P(t) is defined 
[42] as 

P(t) = de t (A) .  

For  example, for the diagram in fig. 7(b): 

P(t) = P(t  -1) = -  16t -5 + 12t -4 + 192t -3 - 288t - a -  368t -I + 936 

- 16 :  + 12t 4 + 192t 3 - 288t 2 - 368t. 

On the other  hand,  P(t) ¢ P( t  -1 ) for the diagram in fig. 7(a): 

P(t) = - 16t -5 + 3t -4 + 180t -3 - 246t -2 - 360t -1 + 967 

- 1 6 :  + 4 t  4 + 2 0 0 t  3 - 200t 2 - 516t, 

P( t  -1) = - 16t -5 + 4t -4 + 200t -3 - 200t -2 - 516t -1 + 967 

- 1 6 :  + 3t 4 + 180t 3 - 246t 2 -  360t. 

The fundamenta l  task of  the theory of  knots was stated over a hundred  years 
ago by its foremost  pioneer: "Given the number  of  its double points, to find all the 
essentially different forms which a closed curve can assume" [29a]. To meet  this 
objective requires the development of  knot invariants, mathemat ica l  objects, such 
as knot  groups or topological spaces, that  can be unambiguously  assigned to knot  
types. The crossing number  is an example of  a weak knot  invariant  since different 
knots  may  share the same number  (table 1). Is the polynomial  P(t) a knot  invar- 
iant? 

The first polynomial  knot  invariant, discovered by Alexander  in 1928 [44], 
failed to distinguish between enantiomorphs.  This problem was overcome in 1985 
by the Jones polynomial  [45]. Jones' discovery triggered a burst  o f  activity that  led 
to more  powerful,  two-variable polynomials [36,37,46,47], all o f  which have in 
c o m m o n  a key feature that  is also shared by P(t):  under  transposit ion of  t and t -1 , 
the polynomial  remains unchanged if the knot  is amphicheiral .  However,  while 
the Jones, Homily ,  and Kauf fman  polynomials are independent  of  any part icular  
presentat ion or projection, this is not  true for P(t): as the example of  1043 demon-  
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strates, P(t) = P(t -1) for an amphicheiral knot only if the adjacency matrix of the 
vertex-bicolored graph has twofold antisymmetry (or can be transformed into one 
that does). Otherwise P(t) ~ P(t -1 ), a condition that is not sufficient to allow a dis- 
tinction to be made between an amphicheiral and a non-amphicheiral knot. In 
short, P(t) depends for its success on the "correct" choice of a projection, and it 
follows that this polynomial cannot be a knot invariant. 

These observations lead to the following conjecture: a knot is amphicheiral if 
and only if at least one of the polynomials derived from its vertex-bicolored graphs 
satisfies P(t) = P(t-1), the condition of twofold antisymmetry; otherwise it is topo- 
logically chiral. Although we know of no exceptions, we are aware that there may 
be room for surprises akin to the failure of the Jones polynomial to detect the chiral- 
ity of 942 [37]. 

4. Presentat ions with geometric symmetry 

Some knots are capable of attaining presentations with geometric symmetry. 
Such rigidly symmetric presentations are exemplified by the trefoil, figure-eight, 
square, and granny knots, which are shown in fig. 1 with D3, C2, C2h, and D2 sym- 
metry, respectively. Nor are such presentations necessarily unique; for example, 
the trefoil knot can also display D2 symmetry. 

Thirteen of the 20 amphicheiral prime knots with up to 10 crossings (41, 63, 83, 
89, 812, 818, 1017, 1033, 1037, 1043, 1045, 1099, 10123) can attain rigidly symmetric 
presentations with twofold axes of rotation, though in some cases this may require 
the addition of nugatory crossings (fig. 8). Rotation by ~ around the twofold axis 
reverses the knot's orientation, i.e., the direction given by an arrow along the curve. 
Each of these invertible knots [15,16,35] can therefore be isotoped to one whose 
orientation has been reversed. Note that rotation by n combined with reversal of 
orientation is an operation that is abstractly equal to twofold antirotation (section 
2.2), with orientation taking the place of color. 

The remaining seven non-invertible knots (817, 1079, 1081, 1088, 10109, 10115, 
10118) are asymmetric in all of their presentations [19] and hence, in contrast to 
invertible knots, cannot attain rigidly achiral presentations [33]. It follows that 
interconversion of enantiomorphous presentations by continuous deformation 
cannot proceed through a rigidly achiral state. Although interconversion of enan- 
tiomorphous presentations of invertible knots can proceed through such a state, 
there are an infinite number ofinterconversion paths by which this state can be cir- 
cumvented (as illustrated for 41 in fig. 7 of [16], fig. 11 of [22], and scheme 35 of 
[1 lb]). Because of the absence of a boundary set of rigidly achiral presentations, 
enantiomorphous presentations of invertible as well as non-invertible amphi- 
cheiral prime knots cannot be partitioned into heterochiral classes. 
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t I I I 

i I I i 

83 812 818 10123 

I I I i 

I I I i 

63 89 1017 1033 

Fig. 8. A sampling of invertible amphicheiral prime knots in presentations with twofold axes of rota- 
tion (dashed lines). Top: reduced diagrams. Bottom: diagrams with additional nugatory crossings. 

Only one of the multiple twofold axes is shown for 818 and 10123. 

4.1. FROM KNOT GRAPHS TO RIGIDLY ACHIRAL PRESENTATIONS 

A rigidly achiral presentation of a prime knot cannot contain a plane of symme- 
try, for if the plane were the plane of projection, reflection would switch over- and 
undercrossings, and if the plane were perpendicular to the plane of projection, the 
knot would not be prime. This leaves S~,n = 1,2,. . . ,  as the only possible point 
group for such presentations. 

We have found it convenient to use a simple pictorial algorithm to develop 
rigidly achiral presentations. The algorithm consists of the following four steps: (1) 
choose a knot graph that is compatible with the S2n symmetry of a vertex-bicolored 
graph; (2) list all "allowed" vertex color motifs; (3) operate with Sz, on these 
motifs to generate the corresponding vertex-bicolored graphs; (4) convert the 
graph to rigidly achiral presentations. For the purposes of this paper, we limit 
"allowed" vertex color motifs to those that lead to non-trivial prime knots, i.e., we 
"disallow" motifs that lead to composite knots, to the unknot, and to linked struc- 
tures. For example, consider the planar 8-vertex graph in fig. 9, whose innermost 
and outermost circuits are equivalent. Under the above restriction only one vertex 
color motif is "allowed"; the operation $4 on this motif then yields the vertex- 
bicolored graph for the rigidly achiral presentation of the figure-eight knot 
[33a,37,11 b,d,e]. 

The 8-vertex knot graph can be expanded to a planar 16-vertex graph with four- 
fold symmetry by the addition of two concentric squares (fig. 10); once again the 
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t 

Fig. 9. Conversion of a 8-vertex knot graph to a $4 presentation of the figure-eight knot. Top left: 
knot graph with fourfold symmetry. Bottom left: vertex color motif. Bottom right: G(41, $4). Top 

right: $4 diagram. 

I 

t ' ÷ " t 

Fig. 10. Conversion of a 16-vertex knot graph with fourfold symmetry (top) to $4 presentations of 
63 (left), 812 (center), and a 14-crossing non-alternating prime knot (right). Shown in vertical descent 
are the respective vertex color motifs, vertex-bicolored knot graphs, $4 diagrams, and reduced knot 

diagrams. 
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innermost and outermost circuits are equivalent. There are now exactly 3 allowed 
vertex color motifs which, under the operation of $4, yield vertex-bicolored graphs 
for the $4 presentations of 63 [32b], 812, and a 14-crossing non-alternating amphi- 
cheiral prime knot. Further expansion, to the 24-vertex knot graph in fig. 11, and 
selection of 3 out of the 10 allowed vertex color motifs, yields $4 presentations for 
89, 1043, and 1045. Finally, expansion to the 32-vertex knot graph in fig. 12 yields the 
$4 presentation of 1017; this requires choosing one of 36 allowed vertex color 
motifs. 

Fig. 11. Conversion of a 24-vertex knot graph (top) to $4 presentations of 89 (left), 1043 (center), and 
1045 (right). Shown in vertical descent are the respective vertex color motifs, vertex-bicolored knot 

graphs, and $4 diagrams. 
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1 f 

Fig. 12. Conversion of a 32-vertex knot graph to a $4 presentation of 1017. Top left: knot graph with 
fourfold symmetry. Bottom left: one of 36 allowed vertex color motifs. Bottom right: G( 1017, $4). Top 

right: $4 diagram. 

Different  types of  knot  graphs are required for the generat ion of  rigidly achiral 
presentat ions of  the remaining classical amphicheiral  prime knots. Fig. 13 shows 
conversion of  a 12-vertex knot  graph into the $4 presentat ion of  83 by use of  the sin- 
gle allowed vertex color motif.  Fig. 14 shows two different 20-vertex knot  graphs 

t 

Fig. 13. Conversion of a 12-vertex knot graph to a $4 presentation of 83. Top left: knot graph with 
fourfold symmetry. Bottom left: vertex color motif. Bottom right: G(83, $4). Top right: $4 diagram. 
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Fig. 14. Conversion of two 20-vertex knot graphs to $4 presentations of 1033 (left) and 1037 (right). 
Shown in vertical descent are the respective vertex color motifs, vertex-bicolored knot graphs, and $4 

diagrams. 

that are converted into $4 presentations of 1033 and 1037 via, in each case, one of 6 
allowed vertex color motifs. And fig. 15 shows a 16-vertex knot graph with eight- 
fold symmetry that is developed into a $8 presentation of 818 [32b] by choice of the 
single allowed vertex color motif. 

The remaining two knots, 1099 and 10123, are  of special interest because their 
rigidly achiral presentations lack an axis of rotation and thus belong to $2 ( -  Ci) 
[33b, 34a]. Fig. 16 shows two different $2 presentations of 1099 and the correspond- 
ing 12-vertex bicolored graphs. That a given knot can adopt more than one achiral 
symmetry is exemplified by the S10 presentation of 10123 in fig. 17; a beautiful ren- 
dering of this knot may be found in [48]. 
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0 

Fig. 15. Conversion of a 16-vertex knot graph with eightfold symmetry to a Ss presentation of 818. 
Top left: knot graph with fourfold symmetry. Bottom left: vertex color motif. Bottom fight: 

G(81s, Ss). Top right: Ss diagram. 

We conclude this section with three observations. First, it is impossible to con- 
struct $2~ diagrams of the classical amphicheiral prime knots without the addition 
of nugatory crossings (figs. 9-17). Second, the adjacency matrices A(K, $2~) that 
correspond to S2n diagrams exhibit structures akin to those discussed in section 3.2, 
as illustrated for A(41, $4) and A(1099, $2) below. Note that the latter, which corre- 
sponds to the diagram at the top of fig. 16, has a minor diagonal that consists 
entirely of zeros; this is true of all A(K, S2)'s. 

Fig. 16. Two $2 presentations of 1099. Left: diagrams. Right: associated vertex-bicolored knot 
graphs. 
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Fig. 17. Two rigidly achiral presentations of 10123 and associated vertex-bicolored knot graphs. 
Top: $2 symmetry. Bottom: S10 symmetry. 

A(41, $4) = 

A(1099 , S2) = 

( t  0 0 1  1 1 1 O ~  

0 t 1 0  0 1 1 1 

0 1  t 0 1 0 1 1 

1 0 0  t 1 1 0 1 

1 0 1  1 t -1 0 0 1 

1 1 0 1 0 t -~ 1 

1 1 1 0 0 

0 

1 t -1 0 

0 1 1 1 1 0 0 t - l , )  

( ' t  1 0 0 0 0  1 

1 t 2 0 0 0  1 

0 2  t 2 0 0  0 

0 0 2  t 1 0  0 0 0 0 0 

0 0 0 1  t 1 1 0 0 0 0 

1 1 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1  t 0 1 0 

1 1 0 0  1 0 t -1 1 0 

1 0 0 0 0 1  1 t -I 1 

1 0 0 0 0 0  0 

0 0 0 0 0 0  0 

0 0 0 0 0  1 0 

~ 0 0 0 1  1 1 0 \ 

1 

0 1 1 

0 0 0 

0 0 0 

1 t -1 2 0 0 

0 2 t -1 2 0 

0 0 2 t -1 1 

0 0 0 1 t -1 
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Third, by purposely restricting the generation of rigidly achiral presentations 
to non-trivial prime knots, we have severely limited the scope of the combinatorial 
possibilities inherent in our algorithm: relaxation of this constraint on vertex color 
motifs yields amphicheiral links, composite knots, and the unknot, in addition to 
a plethora of prime knots. We have initiated a systematic study of the algorithm in 
order to explore its full potential. 

4.2. WIRE MODELS 

Walba [ 11 d] had noted that "Interestingly, a figure-of-eight knot made of wire, 
such that there is a force tending to give the presentation with the least bending of 
the 'line', spontaneously springs into the symmetry [$4] presentation!". For a time 
this "jumping knot" even became commercially available [49]! Since we had 
worked out $2~ presentations for all of the classical invertible amphicheiral prime 
knots, it became of some interest to examine the corresponding wire models. 

4.2.1. Method of construction 
All wire models were constructed as follows: a suitable length of 0.03 in. dia. 

steel spring wire was bent into a shape with minimum crossings, and the ends were 
then brought together and fused with silver solder. In the process of bending and 
fusing, every effort was made to minimize unnecessary strain and to avoid twisting 
the wire about its long axis. This procedure yielded the "standard model". If one 
end of the wire was twisted by one or more full turns prior to fusion, the resulting 
model exhibited nugatory crossings and "abnormal" (relative to the standard 
model) behavior. For example, the standard model of the figure-eight knot behaves 
exactly as described by Walba: first compressed into a flat circular pile and then 
released, the model jumps as it assumes a rounded $4 conformation, with two + 
crossings at one end and two - crossings at the other. But a wire model of the trefoil 
knot with one extra (nugatory) crossing, obtained by twisting one end of the wire 
by a full turn prior to fusion, behaves in exactly the same manner, only now the 
jumping knot has D2 symmetry, with two + or two - crossings at both ends. Simi- 
larly, a wire model of the figure-eight knot with one extra crossing has C2 symme- 
try, with three + (or - )  crossings at one end and two - (or +) at the other. 

4.2.2. Higher homologues of the amphicheiraljumping knot 
With the sole exception of 41 and 83, none of the standard wire models of the 13 

invertible amphicheiral prime knots with up to 10 crossings showed the slightest 
tendency spontaneously to adopt rigidly achiral presentations. What 41 and 83 have 
in common is that they are members of a homologous series of amphicheiral knots 
with c(K) = 4n, n = 1, 2 , . . . ,  whose $4 diagrams have 4(n + 1) minimum cross- 
ings. Indeed, wire models of the appropriate knots with c(K) = 12, 16, and 20 also 
spontaneously adopted the corresponding $4 presentations (fig. 18). The family 
relationship is summarized schematically in fig. 19. 
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Fig. 18. $4 diagrams of knots with c(K) = 12 (left), 16 (center), and 20 (right), corresponding to ver- 
tex-bicolored knot graphs #3,4, and 5 in fig. 19. 

As c(K) increases, the models become elongated along the $4 axis. Wire models 
of  knots with c(K) >1 12 are quite flexible, and upon compression along the $4 axis 
spring into a new conformat ion in which one half  of  the model  has turned inside out  
to produce a bowl-shaped entity with C2 symmetry.  Flat tening this bowl produces 
one of  two results: either the model pops back into the original $4 shape, or it 
inverts directly into its mirror  image. The two paths are illustrated in fig. 20 for a 
16-crossing knot. These processes bear a formal resemblance to the bowl-to-bowl 
inversion of  corannulene [50] and the tub-to-tub inversion ofcyclo6cta te t raene  [51] 

- even to the extent that direct inversion of  the wire model  has the same "feel"  as 
inversion of  a Dreiding model  of  cyclo6ctatetraene. The interconversions in fig. 20 
are thus formally analogous to direct and indirect (via an achiral intermediate)  
unimolecular  enantiomerization processes, as illustrated by the energy profile in 
fig. 20. It is also the case that  the relative energies of  conformations A (or C) and B 
crucially depend on the crossing number. Thus, the $4 conformat ion  is the only 
accessible energy min imum for models of  41 and 83, while A and C are shallow 
minima for models of  the 12-crossing knot  in fig. 18. Only for models of  knots with 

l 
I 
t 

Fig. 19. Schematic diagram showing the first five members of a family of vertex-bicolored knot 
graphs associated with S4-symmetric presentations. #1 = 8-vertex graph for 4~; #2 = 12-vertex 
graph for 83; #3 = 16-vertex graph for a knot with c(K) = 12; #4 = 20-vertex graph for a knot with 
c(K) = 16; #5 = 24-vertex graph for a knot with c(K) = 20. Four edges form a circle on the outside 

of each graph; inside circles must be suppressed for 83 and higher knots. 



22 C. Liang, K. Mislow / On amphicheiral knots 

A , " - " ,  C 

B B 

Fig. 20. Wire model of the 16-crossing knot in fig. 18. Top left and right: diagrams of enantiomor- 
phous bowl- shaped models with C2 symmetry (A and C) viewed along the C2 axis. Heavy shading 
indicates that the rim of the bowl is close to the observer. Bottom: diagram of model with $4 symmetry 
(B) viewed along the $4 axis. Center: schematic sketch of an energy prot'fle for the interconversion 
("enantiomerization") of A and C. The dashed line indicates one-step interconversion through a 

"transition state" and the solid line two-step interconversion through an "intermediate". 

c(K) > 12 do the enantiomorphous bowl conformations A and C acquire a signifi- 
cant measure of stability. 

Extensions to non-amphicheiral knots are readily envisaged: addition or sub- 
traction of one or more crossings at one end of the $4 axis desymmetrizes the $4 
wire model to one with C2 symmetry. The bowls in this model are no longer related 
by symmetry, as illustrated for a 18-crossing knot in fig. 21, and the bowl-to-bowl 
interconversions are now formally analogous to diastereomerization processes. 

5. The 12-crossing amphicheiral prime knots 

Knots with up to 10 crossings have been thoroughly studied over a period of 
more than a century. In contrast, knots with crossing numbers in excess of 10 are, 
for all intents and purposes, terra incognita. As regards amphicheiral prime knots 
with c(K) > 10, to our knowledge there exists only one published tabulation of 12- 
crossing amphicheirals, by Haseman [52], and one that is still unpublished, by This- 
tlethwaite [53]. No tabulations exist for amphicheiral knots with c(K) > 12. 
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l} 

B 

Fig. 21. Wire model of  a non-amphicheiral 18-crossing knot obtained by addition of  two crossings 
to one end of the $4 axis of the 16-crossing knot in fig. 20. A diagram of the resulting model with (?2 
symmetry (B) is shown at the bottom, viewed along the C2 axis. Top left and right: diagrams of aniso- 
metric bowl-shaped models with C2 symmetry (A and C), viewed along the C2 axis. Heavy shading 
indicates that the rim of the bowl is close to the observer. Center: schematic sketch of an energy profile 
for interconversion ("diastereomerization") of A and C. The dashed and solid lines have the same 

significance as in fig. 20. 

5.1. CENSUS OF 12-CROSSING AMPHICHEIRALS 

Haseman used Tait's empirical methods to extend the list of amphicheirals to 
the 61 alternating knots with 12 crossings whose projections are shown in fig. 22 
(reproduced from [52]). In what follows, we denote these knots by Hn, where n is the 
number given in fig. 22; where appropriate, we add, in parentheses, Thistlethwai- 
te's corresponding (and as yet unpublished) 12n notation. 

As Thistlethwaite has pointed out [20], and as we were able to confirm, there 
a r e  7 duplications in  H a s e m a n ' s  list: Hi6  = Hi3  , H36 = n20  , n51 ---~ n50  , H54 = n40  , 

//57 = H45, H60 =//59, and H61 = H6. Furthermore, three of the knots in fig. 22 
(//10 and/-/59 = H60) are shown in projections of diagrams that lack the twofold 
antisymmetry characteristic of amphicheirals. We return to the case of H59 and H60 
in section 5.3; here we merely point out that the projection shown for//10 in [52] 
corresponds to that of a chiral knot, writhe 4. The problem may be traced to an 
error in the last letter of Haseman's alphabetical symbol for Hlo, chagkidbflek. The 
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MARY G. IdASE/~AN : A/~I~HICHE1KAL KNOTS OI ~ TWELVe CROSSINGS. 

3 

51 

~6 

Fig .  22. 

correct symbol, chagkidbflej, corresponds to the Tait diagram of the amphicheiral 
knot 12477 depicted in fig. 23(a), which should therefore be substituted for H10 in 
fig. 22. 
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-S  
(a) (b) 

l 

-------I1-- 

Fig. 23. Top: two different Tait diagrams of knot 12477. Bottom: conversion of the 24-vertex knot 
graph in fig. 11 to a $4 presentation of 12477. Shown in anticlockwise order: knot graph, vertex color 

motif, G(12477, $4), $4 diagram. 

In addi t ion to the 61 - 7 = 54 alternating knots,  there are 4 that  are non-al ter-  
nating [53] and that are depicted in fig. 24. These are the smallest non-al ternat ing 
amphicheiral  prime knots,  but  there are obviously many  more  non-al ternat ing 
amphicheirals  among knots with higher crossing numbers  (e.g., see fig. 10). 

G 
121644 121750 

121~)4 12216i 

Fig. 24. Tait diagrams of the four non-alternating amphicheiral prime knots with c(K) = 12. 
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5.2. RIGIDLY ACHIRAL PRESENTATIONS 

Presentations of  12-crossing prime amphicheirals with S2n symmetry can be 
derived by use of  the algorithm described in section 4.1. Thus, the $4 diagram of  
/-/1 (121287) is depicted on the left in fig. 18, and its vertex-bicolored graph is #3  in 
fig. 19. Starting with the 24-vertex knot  graph in fig. 11, use of one of  the 10 allowed 
vertex color motifs leads to the $4 diagram of  12477 (fig. 23, bottom). Similarly, 
starting with the 20-vertex knot  graphs in fig. 14, use of  one of the 6 vertex color 
motifs allowed for each leads to the $4 diagrams of  H11(121127) and H18(12471) 
(fig. 25). 

Fig. 25. Conversion of the two 20-vertex knot graphs in fig. 14 to $4 presentations of Hll (121127) 
(left) and His(12471) (right). Shown in vertical descent are the respective vertex color motifs, vertex- 

bicolored knot graphs, and $4 diagrams. 
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Fig. 26. Conversion of the 16-vertex knot graph in fig. 15 to a ,74 presentation of H3(1212ss). Top 
left: knot graph with fourfold symmetry. Bottom left: vertex color motif. Bottom right: vertex- 

bicolored knot graph. Top right: $4 diagram. 

As an example of  how different vertex color motifs may lead from the same 
knot graph to different symmetries, consider the 16-vertex knot graph in fig. 15: 
one moti f  leads to the $8 diagram of 818 (fig. 15) while another leads to the $4 dia- 
gram of/-/3 (121288) (fig. 26). In each case, the corresponding moti f  is the only one 
allowed for that symmetry. 

Fig. 27. Diagrams of rigid achiral presentations with $6 symmetry, and their vertex-bicolored 
graphs. Top: H21 (12120z). Bottom: H22 ( 121019 ). 
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Fig. 28. Diagrams of two rigidly achiral presentations of the non-alternating knot 121994, and their 
vertex-bicolored graphs. Top: $6 symmetry, 24 crossings. Bottom: $2 symmetry, 12 crossings. 

We find that 12-crossing amphicheirals are the smallest knots to support presen- 
tations with $6 symmetry; two examples are shown in fig. 27 and one in fig. 28. 
Together with the information contained in section 4.1, this demonstrates the avail- 
ability of presentations with symmetries $2,, n = 1,2, 3, 4, and 5; examples with 
higher symmetries are easily produced by the method described in this paper. 

One of the rigidly achiral presentations of the non-alternating knot 121994 
(fig. 28) is of exceptional interest: the $2 diagram has only 12 crossings! To our 
knowledge, this is the first, and so far the only, example of an amphicheiral prime 
knot whose $2~ diagram is also a reduced diagram. For composite knots this is of 
course well precedented; the simplest example is the square knot, which is also non- 
alternating and whose centrosymmetric (C2h) diagram with 6 crossings is also a 
reduced diagram. To complete the analogy: just as the presentation of 121994 with 
twofold antisymmetry in fig. 24 can be isotoped to the rigidly achiral presentation 
in fig. 28, so can the presentation of the square knot with twofold antisymmetry in 
fig. 29 be isotoped to the rigidly achiral presentation in fig. 1 (f). 

Fig. 29. Tait diagram of the square knot. 
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5.3. DISCERNIBLE AND CONCEALED ANTISYMMETRY 

With  a single exception, all amphicheiral  prime knots with up to 12 crossings 
are capable  of  being shaped into presentat ions with twofold  antisymmetry.  The 
exception is the alternating knot  //59 = H60(12427) (fig. 22 and 30). However ,  
because the connectivities between the black and white subgraphs of  G(H59) and 
G(H60) in fig. 30 are equivalent, the twofold  ant isymmetry  is revealed in the struc- 
tures of  the respective adjacency matrices and in the corresponding polynomials:  

A(H59)  = 

( t  1 0 1 0 0  1 1 0 0 0 O~ 

1 t 2 0 0 1  0 0 0 0 0 0 

0 2  t 1 0 1  0 0 0 0 0 0 

1 0 1  t 2 0  0 0 0 0 0 0 

0 0 0 2  t 0 1 0 0 0 0 1 

0 1 1 0 0 t 0 1 0 0 0 1 

1 0 0 0 1 0 t -1 0 0 1 1 0 

1 0 0 0 0 1 0 t -~ 2 0 0 0 

0 0 0 0 0 0 0 2 t -1 1 0 1 

0 0 0 0 0 0 1 0 1 t -1 2 0 

0 0 0 0 0 0 1 0 0 2 t -1 1 

0 0 0 0 1 1 0 0 1 0 1 t -1 

P(t) = P(t  -1) = -  4t - 6 -  6t -5 + 4 9 t  -4 + 18t -3 - l13t -2 + 68t -1 - 19 

- 4t 6 - 6t 5 + 49t 4 + 18t ~ - 113fl + 68t,  

A(H6o) = 

t 2 0 0 0 0  0 1 0 1 0 0 

2 t 1 0 0 0  0 0 1 0 0 0 

0 1  t 0 0 0  1 0 1 0 0 1 

0 0 0  t 0 0  1 1 0 1 1 0 

0 0 0 0  t 2 0 0 1 0 0 1 

0 0 0 0 2  t 0 0 1 1 0 0 

0 0  1 1 0 0  t -1 2 0 0 0 0 

1 0 0 1 0 0 2 t -~ 0 0 0 0 

0 1 1 0 1 1 0 0 t -1 0 0 0 

1 0 0 1 0 1 0 0 0 t -~ 1 0 

0 0 0 1 0 0 0 0 0 1 t -1 2 

0 0 1 0 1 0 0 0 0 0 2 t -~ 
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9~f 7 ~  12 

8 

7 43~11 
12 

Fig. 30. Top: reduced diagram of/-/59 = H 6 0 ( 1 2 4 2 7 ) .  Bottom: G(H59) (left) and G(Hr0) (right). The 
numbering of vertices refers to the corresponding adjacency matrices in the text. 

P(t) = P( t  -1) --- 108t -4 - 204t -3 - 340t -2 + 594t -I  - 19 

108t 4 - 204t 3 - 340t 2 + 594t .  

In all previous ly  discussed cases the twofo ld  a n t i s y m m e t r y  was mani fes t  in the pre- 
sen ta t ions  themselves;  we call this discernible antisyrnmetry. In  H59 = H60(12427), 
the twofo ld  a n t i s y m m e t r y  is no t  discernible in the kno t ' s  p resen ta t ion  but  surfaces 
in the co r respond ing  ad jacency  matrices;  we call this concealed antisymmetry. 
Rig id ly  achiral  p resenta t ions  o f  this k n o t  are depicted in fig. 31. 

Fig. 31. Diagrams of two rigidly achiral presentations of//59 = H60(12427) with $2 symmetry, and 
their vertex-bicolored graphs. 



C. Liang, K. Mislow / On amphicheiral knots 31 

6. Epilogue 

The appeal of amphicheiral knots lies in their special symmetry properties, but 
in selecting this class of objects we have narrowed our focus on a minuscule subset 
of topological figures: amphicheiral knots constitute a mere 0.6% of all prime 
knots with up to 13 crossings. Furthermore, we have totally ignored the universe of 
complex knots, links, and graphs. Not only that, but our approach has been empiri- 
cal and intuitive: we have offered neither theorems nor proofs, merely observa- 
tions and conjectures. Yet, in partial extenuation, "We might allow our thoughts to 
occasionally escape from the chains of rigor, and, in their freedom, to discover 
new pathways through the forest" [54]. 

We close with some comments on the term "amphicheiral", which was intro- 
duced and defined in Tait's first paper [29a]. It is significant that Tait's work on 
knots was stimulated by William Thomson's theory of vortex atoms [55], that 
Thomson, in 1873, used the terms "homocheiral" and "heterocheiral" [56], and 
that it was only later, as Lord Kelvin, that Thomson introduced and defined 
"chiral" and "chirality" [57]. "Homocheiral", "heterocheiral", and "amphi- 
cheiral" are therefore contemporaneous coinages that predate "chiral" and whose 
roots are closer to the original (XecP = hand). Furthermore, unlike "achiral", 
which simply means "not chiral", the prefix (a#qo~ = on both sides) in "amphi- 
cheiral" is an explicit expression of the twofold antisymmetry (Tait's "quasi-sym- 
metry") that characterizes topologically achiral knots. Finally, "amphicheiral" 
has its use in applications where topological achirality must not be confused with 
chemical achirality; for example, single-stranded DNA tied into a figure-eight knot 
[12c], like circular unknotted DNA, is chiral in all of its chemical and physical man- 
ifestations but is nevertheless amphicheiral. However, it should also be noted that 
the terms "amphicheiral" and "non-amphicheiral" are inappropriate with refer- 
ence to topologically achiral and chiral non-planar graphs, as, for example, in the 
case of the topologically achiral Kuck K5 molecule [58] and the topologically chiral 
Simmons-Paquette K5 molecule [59], both of which contain only one (minimum) 
crossing. In short, "topologically achiral/chiral" subsumes "amphicheiral/non- 
amphicheiral" since the latter terms are suitably applied only to knots and links. 
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